
Page 1 of 12

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 2 of 12

view onlineDesign and Deployment of Avi Kubernetes Operator

Overview
The Avi Kubernetes Operator (AKO) is a Kubernetes operator which works as an Ingress controller and performs Avi-specific
functions in a Kubernetes environment with the Avi Controller. It translates Kubernetes objects to Avi Controller APIs.

This guide helps you understand the architectural overview and design considerations for AKO deployment.

Architecture
The Avi Deployment in Kubernetes for AKO comprises of the following main components: * The Avi Controller * The Service
Engines (SE) * The Avi Kubernetes Operator (AKO)

The Avi Controller

The Avi Controller which is the central component of the Avi architecture is responsible for the following: * Control plane
functionality like the: * Infrastructure orchestration * Centralized management * Analytics dashboard * Integration with the
underlying ecosystem for managing the lifecycle of the data plane (Service Engines).

The Avi Controller does not handle any data plane traffic.

In Kubernetes environments, the Avi Controller is deployed outside the Kubernetes cluster, typically in the native type of the
underlying infrastructure. However, it can be deployed anywhere as long as connectivity and latency requirements are
satisfied.

The Avi Service Engines

https://avinetworks.com/docs/ako/0.9/ako-design-and-deployment/

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 3 of 12

The Avi Service Engines

The SEs implement data plane services of load balancing. For example, Web Application Firewall, DNS/GSLB, etc.

In Kubernetes environments, the SEs are deployed external to the cluster and typically in the native type of the underlying
infrastructure.

The Avi Kubernetes Operator (AKO)

AKO is an Avi pod running in Kubernetes that provides an Ingress controller and Avi-configuration functionality. AKO remains
in sync with the required Kubernetes objects and calls the Avi Controller APIs to deploy the Ingresses and Services via the Avi
Service Engines.
AKO is deployed as a pod via Helm.

Avi Cloud Considerations
Avi Cloud Type

The Avi Controller uses the Avi Cloud configuration to manage the SEs. This Avi Cloud is usually of the underlying
infrastructure type, for ex. VMware vCenter Cloud, Azure Cloud, Linux Server Cloud etc.

Note: This deployment in Kubernetes does not use the Kubernetes cloud type. The integration with Kubernetes and
application-automation functions are handled by AKO and not by the Avi Controller.

Multiple Kubernetes Clusters

A single Avi Cloud can be used for integration with multiple Kubernetes clusters, with each cluster running its own instance of
AKO. Clusters are separated on SEs in the DataPlane by using VRF Contexts. Each Kubernetes cluster must be deployed in a
separate VRF to prevent overlap of IP addresses etc.

Refer to the section for more information.VRF Configuration for Multi Cluster

IPAM and DNS

The IPAM and DNS functionality is handled by the Avi Controller via the Avi cloud configuration.

Refer to the article for more information on supported IPAM and DNS types per Service Discovery Using IPAM and DNS
environment.

Service Engine Groups

A single Service Engine group (the default SE group) is supported per cloud.

Note: AKO v 0.9.1 currently does not support multiple Service Engine groups.

Avi Controller Version

AKO v 0.9.1 is supported with the Avi Controller versions 18.2.x - 18.2.6, 18.2.7, 18.2.8.

https://avinetworks.com/docs/18.2/service-discovery-using-ipam-and-dns/

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 4 of 12

Network Considerations
Avi SE Placement / Pod Network Reachability

With AKO, the service engines are deployed outside the cluster. To be able to load balance requests directly to the pods, the
pod CIDR must be routable from the SE. Depending on the routability of the Pod CNI used in the cluster, AKO can route
using the following options:

Pod is Not Externally Routable

For CNIs like Canal, Calico, Antrea, Flannel etc., the pod subnet is not externally routable. In these cases the CNI assigns a pod
CIDR to each node in the Kuberntes cluster. The pods on a node get IP assigned from the CIDR allocated for that node and is
routable from within the node. In this scenario, the pod reachability depends on where the SE is placed.

If SE is placed on the same network as the Kubernetes nodes, you can turn on static route programming in AKO. With this,
AKO syncs the pod CIDR for each Kubernetes node and programs static route on the Avi Controller for each Pod CIDR with
the Kubernetes node IP as the next hop. Refer to the section for more information.VRF Configuration for Multi Cluster

Pod Subnet is Routable

For CNIs like NSX-T CNI, AWS CNI (in EKS), Azure CNI (in AKS) etc., the pod subnet is externally routable. In this case no
additional configuration is required to allow SEs to reach the Pod IPs. Set to in the AKO Static Route Programming Off
configuration. SEs can be placed on any network and will be able to route the pods.

To know more about the CNIs supported in AKO v 0.9.1 click .here

VRF Configuration for Multi Cluster Use Cases If there are multiple Kubernetes clusters with non-routable CNIs, all
clusters can have the same pod subnet. In this case, to allow the SE to route the traffic to a pod to the correct cluster, the
admin must configure a VRF per cluster on the Avi cloud on the Avi Controller, and add the cluster?s node network to the
corresponding VRF(assuming each Kubernetes cluster has a separate node network).

To configure VRF context, 1. From the Avi UI, navigate to > . 2. Select the required cloud by clicking on Infrastructure Routing
the drop down list. 3. Click on the tab. 4. Click on .Select Cloud VRF Context Create

5. Enter the of the VRF context. 6. Click on .Name Save

The VRF name must be configured in AKO during installation. AKO creates the virtual service in the correct VRF context, for
the Ingress and LB service objects on the cluster.

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 5 of 12

Deployment Modes

Single Arm Deployment

The deployment in which the virtual IP (VIP) address and the Kubernetes cluster are in the same network subnet is called a
.Single Arm Deployment

Two-Arm Deployment

When the virtual IP (VIP) address and the Kubernetes cluster are in different network subnets, then the deployment is a Two-
Arm deployment

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 6 of 12

AKO v 0.9.1 supports both Single-Arm and Two-Arm deployments with in mode.vCenter Cloud write-access

Handling of Kubernetes and Avi Objects
This section outlines the object translation logic between AKO and the Avi Controller.

Service of Type Load Balancer

AKO creates a Layer 4 virtual service object in Avi corresponding to a service of type in Kubernetes. loadbalancer

An example of such a service object in Kubernetes is as follows:

apiVersion: v1

kind: Service

metadata:

 name: avisvc-lb

 namespace: red

spec:

 type: LoadBalancer

 ports:

 - port: 80

 targetPort: 8080

 name: eighty

 selector:

 app: avi-server

AKO creates a dedicated virtual service for this object in Kubernetes that refers to reserving a virtual IP for it. The layer 4
virtual service uses a pool section logic based on the ports configured on the service of type . In this case, the loadbalancer

incoming port is port 80 and hence the virtual service listens on this port for client requests.
AKO selects the pods associated with this service as pool servers associated with the virtual service.

Insecure Ingress

Consider the following example of an insecure hostname specification from a Kubernetes Ingress object:

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 7 of 12

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: my-ingress

spec:

 rules:

 - host: myinsecurehost.avi.internal

 http:

 paths:

 - path: /foo

 backend:

 serviceName: service1

 servicePort: 80

For insecure host/path combinations, AKO uses a Sharded virtual service logic. Here, based on either the namespace of this
Ingress or the hostname value (myhost.avi.internal), a pool object is created on a Shared virtual service. A shared virtual
service typically denotes a virtual service in Avi that is shared across multiple Ingresses.

A priority label is associated to the pool group against its member pool (that is created as a part of this Ingress), with the
priority label .myhost.avi.internal/foo

An associated DataScript object with this shared virtual service is used to interpret the host FQDN/path combination of the
incoming request. The corresponding pool is chosen based on the priority label as mentioned above.

The paths specified are interpreted as checks. This means for this particular host/path if pool X is created then, STARTSWITH
the matchrule can be interpreted as - "If the host header equals and path STARTSWITH then myhost.avi.internal foo

route the request to pool X".

Secure Ingress

Consider the following example of an secure Ingress object:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: my-ingress

spec:

 tls:

 - hosts:

 - myhost.avi.internal

 secretName: testsecret-tls

 rules:

 - host: myhost.avi.internal

 http:

 paths:

 - path: /foo

 backend:

 serviceName: service1

 servicePort: 80

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 8 of 12

SNI Virtual Service per Secure Hostname

AKO creates an SNI child virtual service to a parent shared virtual service for the secure hostname. The SNI virtual service is
used to bind the hostname to an object. The object is used to terminate the secure traffic on sslkeycert sslkeycert

Avi's service engine. In the above example the field denotes the secret asssociated with the hostname secretName myhost.

. AKO parses the attached secret object and appropriately creates the object in Avi. The SNI avi.internal sslkeycert

virtual service does not get created if the secret object does not exist in Kubernetes corresponding to the reference specified
in the Ingress object.

Traffic Routing Post SSL Termination

On the SNI virtual service, AKO creates rules to route the terminated (insecure) traffic to the appropriate httppolicyset

pool object using the host/path specified in the rules section of this Ingress object.

Redirect Secure Hosts from HTTP to HTTPS

Additionally, for these hostnames, AKO creates a redirect policy on the shared virtual service (parent to the SNI child) for this
specific secure hostname. This allows the client to automatically redirect the HTTP requests to HTTPS if they are accessed on
the insecure port (80).

AKO Created Object Naming Conventions
In the current AKO model, all Kubernetes cluster objects are created on the admin tenant in Avi. This is true even for multiple
Kubernetes clusters managed through a single Avi cloud (like the vCenter cloud).

Each virtual service/pool/pool group has to be unique to ensure there are no conflicts between similar object types.

AKO uses a combination of elements from each Kubernetes object to create a corresponding object in Avi that is unique for
the cluster.

L4 Virtual Service

Use the following formula to derive a virtual service name:

vsName = clusterName + "--" + namespace + "--" + svcName

Here,
* is the value specified in values.yaml during install. * refers to the service object's name in Kubernetes. * vrfName svcName

 refers to the namespace on which the service object is created.namespace

L4 Pool

Use the following formula to derive L4 pool names:

poolname = vsName + "-" + listener_port

Here,
* refers to the service port on which the virtual service listens on. * The number of pools is directly listener_port

associated with the number of listener ports configured in the Kubernetes service object.

L4 Pool Group

Use the following formula to derive the L4 pool group names for L4 virtual services:

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 9 of 12

poolgroupname = vsName + "-" + listener_port

Here,
* is the virtual service's name. * refers to the service port on which the virtual service listens on.vsName listener_port

Shared Virtual Service

The shared virtual service names are derived based on a combination of fields to keep it unique per Kubernetes cluster. This is
the only object in Avi that does not derive it's name from any of the kubernetes objects.

The formula to derive the shared virtual service name is as follows:

ShardVSName = clusterName + "--Shared-L7-" + <shardNum>

Here,
* is the value specified in values.yaml during install. * is the number of the shared VS generated clusterName shardNum

based on either hostname or namespace based shards.

Shared Virtual Service Pool

Use the following formula to derive the Shared virtual service pool group name:

poolgroupname = clusterName + "--" + priorityLabel + "-" + namespace + "-" + ingName

Here,
* is the value specified in values.yaml during install. * is the host/path combination specified clusterName priorityLabel

in each rule of the Kubernetes Ingress object. * refers to the name of the ingress object. * refers to the ingName namespace

namespace on which the ingress object is found in Kubernetes.

Shared Virtual Service Pool Group

Use the following formula to derive the shared virtual service pool group name:

poolgroupname = vsName

Here, * is the virtual service's name.vsName

Name of the shared virtual service is the same as the shared virtual service name.

SNI Child Virtual Service

The SNI child virtual service's naming varies between different sharding options.

Hostname Shard

vsName = clusterName + "--" + sniHostName

Namespace shard

vsName = clusterName + "--" + ingName + "-" + namespace + "-" + secret

The difference in naming is done because with namespace based sharding only one SNI child is created per ingress/per secret
object but in hostname based sharding each SNI virtual service is unique to the hostname specified in the Ingress object.

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 10 of 12

SNI Pool

Use the following formula to derive the SNI virtual service's pool names:

poolname = clusterName + "--" + namespace + "-" + host + "_" + path + "-" + ingName

Here, the host and path variables denote the secure hosts' hostname and path specified in the ingress object.

SNI Pool Group

Use the following formula to derive the SNI virtual service's pool group names:

poolgroupname = clusterName + "--" + namespace + "-" + host + "_" + path + "-" + ingName

Some of these naming conventions can be used to debug/derive corresponding Avi object names that can be used as a tool
for first level troubleshooting.

Annotations
AKO v 0.9.1 does not support annotations.

Multi-Tenancy
AKO v 0.9.1 does not currently support Multi-Tenancy.

AKO Support

<th>Kubernetes Version</th>

<th>CNI</th>

<th>Avi Cloud</th>

<th>Object Type</th>

<th>Avi Controller</th>

<td>v1.14</td>

<td>Flannel/Canal/Calico</td>

<td>vCenter</td>

<td>extensionsv1/ingress</td>

<td>18.2.6 onwards</td>

<td>v1.14 to v1.17</td>

<td>Flannel/Canal/Calico</td>

<td>vCenter</td>

<td>Service of type loadlbalancer</td>

<td>18.2.6 onwards</td>

<td>v1.15 to v1.17</td>

<td>Flannel/Canal/Calico</td>

<td>vCenter</td>

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 11 of 12

<td>v1/ingress</td>

<td>18.2.6 onwards</td>

Features Supported

The following features are supported in AKO v 0.9.1:

<th>Feature Name</th>

<th>Component</th>

<td>Service sync of type L4</td>

<td>AKO</td>

<td>Ingress sync of type L7</td>

<td>AKO</td>

<td>SE static route programming</td>

<td>AKO</td>

<td>AKO reboots/retry</td>

<td>AKO</td>

AKO install/ upgrade

Features Currently Not Supported

AKO v 0.91 does not support the following:

OpenShift 3.x /OpenShift 4.x
Any ecosystems/environments/CNIs other than the ones mentioned as supported .here
Avi Annotations
Non-default SE Groups
Egress pod
Custom resources definitions (CRD)
Multiple tenants
AKO does not support ingresses which do not have either hostname or a path defined.
Ingresses in Kubernetes will be deployed only as Sharded L7 VSs in Avi. Dedicated VSs will not be supported for
Ingresses.
Services of type:LoadBalancer will only be deployed as dedicated L4 VSs in Avi.
Changing of Sharding

Avi Networks — Technical Reference (18.2)Design and Deployment of Avi Kubernetes Operator

Copyright © 2020 Avi Networks, Inc. Page 12 of 12

Document Revision History

Date Change Summary

June 30,
2020

Published the Design Guide for AKO version 0.9.1

April 30,
2020

Published the Design Guide for AKO (Tech
Preview)

Related Reading
Install Avi Kubernetes Operator

Compatability Guide for AKO

https://avinetworks.com/docs/18.2//0.9/ako-installation/
https://avinetworks.com/docs/18.2//0.9/ako-compatability-guide/

	view online Design and Deployment of Avi Kubernetes Operator
	Overview
	Architecture
	The Avi Controller
	The Avi Service Engines
	The Avi Kubernetes Operator (AKO)

	Avi Cloud Considerations
	Avi Cloud Type
	Multiple Kubernetes Clusters
	IPAM and DNS
	Service Engine Groups
	Avi Controller Version

	Network Considerations
	Avi SE Placement / Pod Network Reachability
	Pod is Not Externally Routable
	Pod Subnet is Routable

	Deployment Modes
	Single Arm Deployment
	Two-Arm Deployment

	Handling of Kubernetes and Avi Objects
	Service of Type Load Balancer
	Insecure Ingress

	Secure Ingress
	SNI Virtual Service per Secure Hostname
	Traffic Routing Post SSL Termination
	Redirect Secure Hosts from HTTP to HTTPS

	AKO Created Object Naming Conventions
	L4 Virtual Service
	L4 Pool
	L4 Pool Group
	Shared Virtual Service
	Shared Virtual Service Pool
	Shared Virtual Service Pool Group
	SNI Child Virtual Service
	Hostname Shard
	Namespace shard

	SNI Pool
	SNI Pool Group

	Annotations
	Multi-Tenancy
	Features Supported
	Features Currently Not Supported
	Document Revision History

	Related Reading

